Microbial fuel cells: novel biotechnology for energy generation

Microbial fuel cells (MFCs) provide new opportunities for the sustainable production of energy from biodegradable,reduced compounds. MFCs function on different carbohydrates but also on complex substrates present in wastewaters. As yet there is limited information available about the energy metabolism and nature of the bacteria using the anode as electron acceptor; few electron transfer mechanisms have been
established unequivocally. To optimize and develop energy production by MFCs fully this knowledge is
essential. Depending on the operational parameters of the MFC, different metabolic pathways are used by the bacteria. This determines the selection and performance of specific organisms. Here we discuss how bacteria use an anode as an electron acceptor and to what extent they generate electrical output. The MFC technology is evaluated relative to current alternatives for energy generation.
In an era of climate change, alternate energy sources are desired to replace oil and carbon resources. Subsequently, climate change effects in some areas and the increasing production of biofuels are also putting pressure on available water resources. Microbial Fuel Cells have the potential to simultaneously treat wastewater for reuse and to generate electricity; thereby producing two increasingly scarce resources. While the Microbial Fuel Cell has generated interest in the wastewater treatment field, knowledge is still limited and many fundamental and technical problems remain to be solved Microbial fuel cell technology represents a new form of renewable energy by generating electricity from what would otherwise be considered waste, such as industrial wastes or waste water etc. A microbial fuel cell [Microbial Fuel Cell] is a biological reactor that turns chemical energy present in the bonds of organic compounds into electric energy, through the reactions of microorganism in aerobic conditions.

 Microbial fuel cell consists of anode and cathode, connected by an external circuit and separated by Proton Exchange Membrane. Anodic material must be conductive, bio compatible, and chemically stable with substrate. Metal anodes consisting of noncorrosive stainless steel mesh can be utilized, but copper is not useful due to the toxicity of even trace copper ions to bacteria. The simplest materials for anode electrodes are graphite plates or rods as they are relatively inexpensive, easy to handle, and have a defined surface area. Much larger surface areas are achieved with graphite felt electrodes
The most versatile electrode material is carbon, available as compact graphite plates, rods, or granules, as fibrous material (felt, cloth, paper, fibers, foam), and as glassy carbon
Proton Exchange Membrane is usually made up of NAFION or ULTREX.

Click Here To Download Full Seminar Kit


Key: Microbial Fuel Cells ppt,Seminar report  Microbial Fuel Cells, Microbial Fuel Cells workong,How  Microbial Fuel Cells works,Working system of  Microbial Fuel Cells, Microbial Fuel Cells seminar ppt,Engineering seminar topics,Free seminar reports and slides,Seminar presentation download,Electronics seminar topics,Science and technology seminars, Microbial Fuel Cells seminar report, Microbial Fuel Cells